Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Korean Medical Science ; : e333-2021.
Article in English | WPRIM | ID: wpr-915435

ABSTRACT

Background@#Chronic kidney disease (CKD) is a global health problem, and there is no permanent treatment for reversing kidney failure; thus, early diagnosis and effective treatment are required. Gene therapy has outstanding potential; however, the lack of safe gene delivery vectors, a reasonable transfection rate, and kidney targeting ability limit its application. Nanoparticles can offer innovative ways to diagnose and treat kidney diseases as they facilitate targetability and therapeutic efficacy. @*Methods@#Herein, we developed a proximal renal tubule-targeting gene delivery system based on alternative copolymer (PS) of sorbitol and polyethyleneimine (PEI), modified with vimentin-specific chitobionic acid (CA), producing PS-conjugated CA (PSC) for targeting toward vimentin-expressing cells in the kidneys. In vitro studies were used to determine cell viability, transfection efficiency, serum influence, and specific uptake in the human proximal renal tubular epithelial cell line (HK-2). Finally, the targeting efficiency of the prepared PSC gene carriers was checked in a murine model of Alport syndrome. @*Results@#Our results suggested that the prepared polyplex showed low cytotoxicity, enhanced transfection efficiency, specific uptake toward HK-2 cells, and excellent targeting efficiency toward the kidneys. @*Conclusion@#Collectively, from these results it can be inferred that the PSC can be further evaluated as a potential gene carrier for the kidney-targeted delivery of therapeutic genes for treating diseases.

2.
Journal of Korean Medical Science ; : e272-2019.
Article in English | WPRIM | ID: wpr-765123

ABSTRACT

BACKGROUND: Nanoparticle-mediated photothermal therapy (PTT) has been well studied as a treatment for cancer. However, the therapeutic outcome of PTT is often hindered by the penetration depth of laser light. In the tumor margin beyond the laser penetration limit, tumor recurrence often occurs, bypassing the immune response of the host. Accumulating evidence suggests the prominent role of tumor microenvironment (TME) and its interactions with the immune components contribute to an immunosuppressive milieu during the post-therapy period. Here, we explored the immunosuppressive cascade generated after PTT, which is responsible for tumor recurrence, and identified the potential targets to achieve an effective PTT period. METHODS: Here, we investigated the immunosuppressive cascade generated after PTT in a CT26 tumor bearing mouse. The liposomal system loaded with the indocyanine green (ICG) was utilized for the generation of PTT with high efficiency. Immunological factors such as cytokines and protein expressions post-therapy were investigated through enzyme-linked immunosorbent assay, flow cytometry and western blot analysis. RESULTS: Our results suggested that PTT with ICG-loaded liposomes (Lipo-ICG) was effective for the first 5 days after treatment, resulting in tumor suppression. However, an immunosuppressive and pro-inflammatory environment developed thereafter, causing the recruitment and upregulation of the immune evasion factors of heat shock protein 70, programmed death ligand 1, indoleamine-dioxygenase, interleukin-6, transforming growth factor-β, regulatory T-cells, and myeloid-derived suppressor cells, to develop immunotolerance. CONCLUSION: Collectively, these findings have determined potential therapeutic targets to modulate the TME during PTT and achieve tumor ablation without remission.


Subject(s)
Animals , Mice , Blotting, Western , Cytokines , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , HSP70 Heat-Shock Proteins , Immune Evasion , Immunologic Factors , Immunosuppression Therapy , Indocyanine Green , Interleukin-6 , Liposomes , Recurrence , T-Lymphocytes, Regulatory , Tumor Microenvironment , Up-Regulation
3.
Tissue Engineering and Regenerative Medicine ; (6): 575-590, 2018.
Article in English | WPRIM | ID: wpr-717544

ABSTRACT

BACKGROUND: Biopolymeric in situ hydrogels play a crucial role in the regenerative repair and replacement of infected or injured tissue. They possess excellent biodegradability and biocompatibility in the biological system, however only a few biopolymeric in situ hydrogels have been approved clinically. Researchers have been investigating new advancements and designs to restore tissue functions and structure, and these studies involve a composite of biometrics, cells and a combination of factors that can repair or regenerate damaged tissue. METHODS: Injectable hydrogels, cross-linking mechanisms, bioactive materials for injectable hydrogels, clinically applied injectable biopolymeric hydrogels and the bioimaging applications of hydrogels were reviewed. RESULTS: This article reviews the different types of biopolymeric injectable hydrogels, their gelation mechanisms, tissue engineering, clinical applications and their various in situ imaging techniques. CONCLUSION: The applications of bioactive injectable hydrogels and their bioimaging are a promising area in tissue engineering and regenerative medicine. There is a high demand for injectable hydrogels for in situ imaging.


Subject(s)
Biopolymers , Hydrogels , Hydrogels , Regenerative Medicine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL